Methods for Analysis of Participatory and Mobile Crowd Sensing Data

Dragan Stojanovic

Computer Science Department, Faculty of Electronic Engineering
University of Nis, Serbia
Participatory and mobile crowd sensing

- A new sensing and geo-crowd sourcing paradigm
 - Based on the power of various mobile devices/objects
 (e.g., smartphones, wearable devices, smart sensors, vehicles, etc.)

- Ability to acquire local geospatial knowledge through sensor-enhanced mobile devices:
 - Physical, virtual, social sensors
 - Location, trajectory, personal status and surrounding context, noise level, air pollution, traffic and road conditions, etc.

- Possibility to share this knowledge with other participants/users and wide community
Participatory and mobile crowd sensing – Applications

- **DriveSensing**
 - Traffic events monitoring, driver/vehicle behavior, traffic and road condition detection, vehicle and environmental status

- **ExposureSense**
 - Mobile diaries – registering activities and environment conditions (air pollution, noise level, etc.) in indoor/outdoor environments

- **CitySensing**
 - Sensing, reporting, reviewing, or discussing local problems by using social media and participatory sensing
DriveSensing - participatory sensing in traffic domain

- Detect (sense), process, and report:
 - Driver/vehicle activities and behavior, sudden traffic events and risky/aggressive driving
 - Data from GPS, motion sensors, in-car sensors processed locally
 - J48 decision tree (WEKA) adapted to Android
 - Traffic status (dynamic travel time, traffic congestions, etc.)
 - Road conditions monitoring (potholes, road bumps, slippery road, etc)
 - Air pollution (sensors attached to vehicles), vehicle fuel consumption, emission, etc.

- Analysis goals
 - Detection of real-time traffic events, dynamic black spots and bad driver profile
ExposureSense: mobile diary and analysis of mobility

- Integrating daily activities with air quality
 - Using motion sensors and air pollution sensors integrated in mobile device
- Correlation of outdoor/indoor activities, personal status and air quality data estimates user’s exposure to air pollution
 - Standing, running, walking, up stairs, elevator, biking, etc.
 - CO₂, NOₓ, etc.
- Analysis goals
 - Detection of moving behaviors and patterns in relation to background geographic information, and city events.
CitySensing – registering city problems

- User generated geo-content
- Detect and report urban problems
 - Waste disposal,
 - Damaged park furniture,
 - Street holes,
 - Street lights,
 - Drain blocked,
 - Etc.
- Analysis goals
 - Hots spots
 - Heat maps
 - Trends/patterns
Crowd sensing data

- Demo participatory sensing and crowd sourcing applications provide necessary data
 - DriveSensing – driver/vehicle behavioral events, traffic events and status, road condition
 - ExposureSense – user trajectories, activities, air pollution in surrounding, etc.
 - CitySensing – user generated geo-content related to communal and local problems

- Problem
 - Relatively small data sets
 - Collection of large real-world participatory sensing data sets needs a “campaign”, such as Nokia Mobile Data Challenge and CoenoSense (ETHZ)
Methods and tools for analysis in participatory sensing

- Semantic enrichment of VGI (mobility data)
 - Locally at the smart device
 - Bringing semantics to plain geographic information
 - Semantics of mobility and events (ontologies)

- Aggregation and fusion at servers (cloud)
 - Clustering (DBSCAN, OPTICS, etc.) – to improve the accuracy of reporting (sensing)
 - Data stream processing and CEP – to detect complex online events, behaviors, goals, etc. And generate notifications

- Big mobility data processing and analysis
 - MapReduce/Hadoop, Mahout, Spark, etc.
 - STORM, S4, Esper, etc.
Further research/collaboration - Semantics of VGI

- Users generate and send **semantic** geo-information related to their mobility, by processing and analysing raw geo-referenced data at their mobile devices, to
 - Servers (cloud)
 - Mobile devices in surrounding (MANET)

- Various aspects of mobility of moving objects (people, vehicles, assets, animals,...) related to locations/trajectories
 - User and environment context, personal and social status, activity, goal, behavior, physiological status, vehicle condition, traffic condition, air pollution, social media, etc.

- ...at different levels of granularity
Further research/collaboration – Integration with background geo-info

- Personalized daily diaries
 - next generation personalized healthcare and urban mobility applications

- Inference based on semantics:
 - Reasons of movement/behaviour, detection of anomalies and predictions of future movement/behavior

- Analyse moving behaviors and patterns of citizens/tourists and relate them to:
 - background geographic information (POI, road network data, indoor maps),
 - time context,
 - weather conditions, means of transport,
 - social/cultural events in the city/indoors, etc.
Research challenges

- Incentive mechanisms
 - To attract mobile users to participate in crowd sensing activities

- Privacy preservation
 - Basic movement data is enhanced with rich semantics of the participating moving objects and their trajectories; privacy is at higher risk
Thank you for your attention

Dragan Stojanovic

dragan.stojanovic@elfak.ni.ac.rs